Wednesday, 2 August 2017

Algoritmo De Média Móvel


Noções básicas de negociação algorítmica: conceitos e exemplos Um algoritmo é um conjunto específico de instruções claramente definidas, destinadas a realizar uma tarefa ou processo. A negociação algorítmica (negociação automatizada, negociação em caixa preta ou simplesmente algo-trading) é o processo de usar computadores programados para seguir um conjunto definido de instruções para colocar um comércio para gerar lucros a uma velocidade e freqüência impossíveis para um Comerciante humano. Os conjuntos definidos de regras são baseados em tempo, preço, quantidade ou qualquer modelo matemático. Além das oportunidades de lucro para o comerciante, o algo-trading torna os mercados mais líquidos e torna a negociação mais sistemática descartando impactos emocionais humanos nas atividades comerciais. Suponha que um comerciante siga esses critérios de comércio simples: Compre 50 ações de uma ação quando sua média móvel de 50 dias exceda a média móvel de 200 dias. Vende ações da ação quando sua média móvel de 50 dias está abaixo da média móvel de 200 dias Usando este conjunto de duas instruções simples, é fácil escrever um programa de computador que monitorará automaticamente o preço das ações (e os indicadores de média móvel) e colocará as ordens de compra e venda quando as condições definidas forem atendidas. O comerciante não precisa mais manter um relógio para preços e gráficos ao vivo, ou colocar as ordens manualmente. O sistema de comércio algorítmico automaticamente faz isso para ele, identificando corretamente a oportunidade comercial. (Para obter mais informações sobre as médias móveis, consulte: Médias móveis simples, faça as Tendências se destacarem.) A Algo-trading oferece os seguintes benefícios: Negociações executadas com os melhores preços. Posicionamento de pedidos comerciais instantâneo e preciso (com altas chances de execução nos níveis desejados) Cronometrado corretamente e instantaneamente, para evitar mudanças de preços significativas Custos de transação reduzidos (veja o exemplo de falta de implementação abaixo) Verificações automatizadas simultâneas em múltiplas condições de mercado Redução do risco de erros manuais na colocação dos negócios Backtest o algoritmo, com base nos dados históricos e em tempo real disponíveis Reduzida Possibilidade de erros cometidos por comerciantes humanos com base em fatores emocionais e psicológicos. A maior parte do dia-a-dia é a negociação de alta freqüência (HFT), que tenta capitalizar a colocação de um grande número de pedidos em velocidades muito rápidas em múltiplos mercados e decisões múltiplas Parâmetros, com base em instruções pré-programadas. (Para mais informações sobre negociação de alta frequência, consulte: Estratégias e Segredos de Empresas de Negociação de Alta Frequência (HFT)) A Algo-trading é utilizada em muitas formas de atividades de negociação e investimento, incluindo: investidores de médio a longo prazo ou empresas de compra (fundos de pensão , Fundos de investimento, companhias de seguros) que compram em ações em grandes quantidades, mas não querem influenciar os preços das ações com investimentos discretos e em grande volume. Os comerciantes de curto prazo e os participantes do lado da venda (fabricantes de mercado, especuladores e arbitragistas) também se beneficiam da execução automatizada do comércio, auxiliando algo-trading na criação de liquidez suficiente para os vendedores no mercado. Os comerciantes sistemáticos (seguidores de tendências, comerciantes de pares, hedge funds, etc.) acham muito mais eficiente programar suas regras de negociação e permitir que o programa seja comercializado automaticamente. O comércio algorítmico proporciona uma abordagem mais sistemática ao comércio ativo do que os métodos baseados em intuição ou instinto de comerciantes humanos. Estratégias de negociação algorítmica Qualquer estratégia para negociação algorítmica exige uma oportunidade identificada que seja rentável em termos de melhoria de ganhos ou redução de custos. As seguintes são estratégias de negociação comuns usadas em algo-trading: as estratégias de negociação algorítmicas mais comuns seguem as tendências nas médias móveis. Fugas de canal. Movimentos de níveis de preços e indicadores técnicos relacionados. Estas são as estratégias mais fáceis e simples de implementar através de negociação algorítmica porque essas estratégias não envolvem fazer previsões ou previsões de preços. As negociações são iniciadas com base na ocorrência de tendências desejáveis. Que são fáceis e direitas de implementar através de algoritmos sem entrar na complexidade da análise preditiva. O exemplo acima mencionado de média móvel de 50 e 200 dias é uma tendência popular seguindo a estratégia. (Para mais informações sobre as estratégias de negociação de tendências, veja: Estratégias simples para capitalizar as tendências.) Comprar uma ação dupla cotada a um preço mais baixo em um mercado e simultaneamente vendê-lo a um preço mais alto em outro mercado oferece o diferencial de preço como lucro livre de risco Ou arbitragem. A mesma operação pode ser replicada para ações versus instrumentos de futuros, pois os diferenciais de preços existem de tempos em tempos. Implementar um algoritmo para identificar esses diferenciais de preços e colocar as ordens permite oportunidades lucrativas de forma eficiente. Os fundos do índice definiram períodos de reequilíbrio para que suas participações fossem compatíveis com seus respectivos índices de referência. Isso cria oportunidades rentáveis ​​para comerciantes algorítmicos, que capitalizam os negócios esperados que oferecem lucros de 20 a 80 pontos base, dependendo do número de ações no fundo do índice, apenas antes do reequilíbrio do fundo do índice. Essas negociações são iniciadas através de sistemas de negociação algorítmica para execução atempada e melhores preços. Muitos modelos matemáticos comprovados, como a estratégia de negociação neutra dota, que permitem a negociação em combinação de opções e sua segurança subjacente. Onde os negócios são colocados para compensar deltas positivos e negativos para que o portfólio delta seja mantido em zero. A estratégia de reversão média baseia-se na idéia de que os preços altos e baixos de um bem são um fenômeno temporário que retorna periodicamente ao seu valor médio. Identificar e definir uma faixa de preço e implementar algoritmos com base em isso permite que os negócios sejam colocados automaticamente quando o preço do recurso entra e sai do seu alcance definido. A estratégia de preços médios ponderados por volume quebra uma grande ordem e libera dinamicamente determinados pedaços menores da ordem para o mercado usando perfis de volume histórico específicos de estoque. O objetivo é executar a ordem próxima ao preço médio ponderado por volume (VWAP), beneficiando assim o preço médio. A estratégia de preço médio ponderado no tempo quebra uma grande ordem e libera dinamicamente determinados pedaços menores da ordem para o mercado usando intervalos de tempo uniformemente divididos entre uma hora de início e fim. O objetivo é executar a ordem perto do preço médio entre os horários de início e término, minimizando assim o impacto no mercado. Até que a ordem comercial seja totalmente preenchida, esse algoritmo continua enviando ordens parciais, de acordo com o índice de participação definido e de acordo com o volume negociado nos mercados. A estratégia de etapas relacionadas envia ordens a uma porcentagem definida pelo usuário de volumes do mercado e aumenta ou diminui essa taxa de participação quando o preço da ação atinge os níveis definidos pelo usuário. A estratégia de falta de implementação visa minimizar o custo de execução de uma ordem através da negociação do mercado em tempo real, economizando assim o custo da ordem e beneficiando do custo de oportunidade da execução atrasada. A estratégia aumentará a taxa de participação direcionada quando o preço das ações se mover de forma favorável e diminuí-lo quando o preço das ações se mover de forma adversa. Existem algumas classes especiais de algoritmos que tentam identificar acontecimentos do outro lado. Esses algoritmos de sniffing, usados, por exemplo, por um fabricante de mercado de venda têm a inteligência interna para identificar a existência de qualquer algoritmo no lado da compra de uma grande ordem. Essa detecção através de algoritmos ajudará o fabricante de mercado a identificar grandes oportunidades de ordem e permitir que ele se beneficie ao preencher as ordens a um preço mais elevado. Isso às vezes é identificado como front-running de alta tecnologia. (Para obter mais informações sobre negociação de alta freqüência e práticas fraudulentas, consulte: Se você comprar ações on-line, você está envolvido em HFTs.) Requisitos técnicos para negociação algorítmica Implementar o algoritmo usando um programa de computador é a última parte, batida com backtesting. O desafio é transformar a estratégia identificada em um processo informatizado integrado que tenha acesso a uma conta de negociação para fazer pedidos. São necessários os seguintes conhecimentos: conhecimento de programação de computador para programar a estratégia de negociação necessária, programadores contratados ou software de negociação pré-fabricado. Conectividade de rede e acesso a plataformas de negociação para colocar os pedidos. Acesso a feeds de dados de mercado que serão monitorados pelo algoritmo para oportunidades de colocação Ordens A capacidade e a infra-estrutura para testar o sistema uma vez construído, antes de entrar em operação em mercados reais Dados históricos disponíveis para backtesting, dependendo da complexidade das regras implementadas no algoritmo. Aqui está um exemplo abrangente: o Royal Dutch Shell (RDS) está listado em Amsterdã Stock Exchange (AEX) e London Stock Exchange (LSE). Vamos criar um algoritmo para identificar oportunidades de arbitragem. Aqui estão algumas observações interessantes: as negociações da AEX em euros, enquanto a LSE é negociada em libras esterlinas. Por causa da diferença horária de uma hora, a AEX abre uma hora antes da LSE, seguido de ambas as trocas comerciais simultaneamente durante as próximas horas e depois da negociação somente na LSE durante A última hora com o fechamento da AEX Podemos explorar a possibilidade de negociação de arbitragem nas ações do Royal Dutch Shell listadas nesses dois mercados em duas moedas diferentes. Um programa de computador que pode ler os preços atuais do mercado. Os preços dos feeds da LSE e AEX A forex para Taxa de câmbio GBP-EUR Capacidade de colocação de pedidos que pode rotear a ordem para a troca correta. Capacidade de teste de back-up em feeds de preços históricos. O programa de computador deve executar o seguinte: Leia o preço de entrada do estoque RDS de ambas as bolsas Usando as taxas de câmbio disponíveis . Converte o preço de uma moeda para outra. Se houver uma discrepância de preços suficientemente grande (descontando os custos de corretagem), levando a uma oportunidade rentável, então coloque o pedido de compra em troca de preços mais baixos e venda em câmbio com preços mais altos Se as ordens forem executadas como Desejado, o lucro da arbitragem seguirá Simples e Fácil No entanto, a prática de negociação algorítmica não é tão simples de manter e executar. Lembre-se, se você pode colocar um comércio gerado por algo, os outros participantes do mercado podem também. Conseqüentemente, os preços flutuam em milissegundos e até mesmo em microssegundos. No exemplo acima, o que acontece se o seu comércio de compras for executado, mas vender o comércio não, à medida que os preços de venda mudam quando o seu pedido atingir o mercado Você vai acabar sentado com uma posição aberta. Tornando sua estratégia de arbitragem inútil. Existem riscos e desafios adicionais: por exemplo, riscos de falha do sistema, erros de conectividade de rede, atrasos de tempo entre ordens comerciais e execução e, o mais importante, algoritmos imperfeitos. O algoritmo mais complexo, o backtesting mais rigoroso é necessário antes de ser posto em ação. A análise quantitativa de um algoritmo de desempenho desempenha um papel importante e deve ser examinada criticamente. É emocionante ir pela automação auxiliada por computadores com a noção de ganhar dinheiro sem esforço. Mas é preciso certificar-se de que o sistema está completamente testado e os limites exigidos são definidos. Os comerciantes analíticos devem considerar aprender programação e construir sistemas por conta própria, ter confiança em implementar as estratégias certas de forma infalível. O uso cauteloso eo teste completo de algo-trading podem criar oportunidades rentáveis. Em estatísticas, uma média móvel simples é um algoritmo que calcula a média não ponderada das últimas amostras n. O parâmetro n geralmente é chamado de tamanho da janela, porque o algoritmo pode ser pensado como uma janela que desliza sobre os pontos de dados. Ao usar uma formulação recursiva do algoritmo, o número de operações necessárias por amostra é reduzido a uma adição, uma subtração e uma divisão. Uma vez que a formulação é independente do tamanho da janela n. A complexidade de tempo de execução é O (1). Isto é, constante. A fórmula recursiva da média móvel não ponderada é, onde média é a média móvel e x representa um ponto de dados. Assim, sempre que a janela desliza para a direita, um ponto de dados, a cauda, ​​deixa cair e um ponto de dados, a cabeça, se move. Implementação Uma implementação da média móvel simples deve levar em consideração a inicialização Algoritmo desde que A janela não está totalmente preenchida com valores, a fórmula recursiva falha. Armazenamento O acesso ao elemento da cauda é necessário, o que, dependendo da implementação, requer um armazenamento de n elementos. Minha implementação usa a fórmula apresentada quando a janela está totalmente preenchida com valores e, de outro modo, muda para a fórmula, que atualiza a média ao recalcular a soma dos elementos anteriores. Observe que isso pode levar a instabilidades numéricas devido à aritmética de ponto flutuante. No que diz respeito ao consumo de memória, a implementação usa iteradores para acompanhar elementos da cabeça e da cauda. Isso leva a uma implementação com constantes requisitos de memória independentes do tamanho da janela. Aqui está o procedimento de atualização que desliza a janela para a direita. Em. NET, a maioria das coleções invalida seus enumeradores quando a coleção subjacente é modificada. A implementação, no entanto, depende de enumeradores válidos. Especialmente em aplicações baseadas em streaming, a coleção subjacente precisa ser modificada quando um novo elemento chegar. Uma maneira de lidar com isso é criar uma coleção de tamanho fixo circular simples de tamanho n1 que nunca invalida seus iteradores e, alternativamente, adicione um elemento e chame Shift. Gostaria de descobrir como implementar isso, pois a função Test é muito confusa para mim. Preciso converter dados em Array, então execute SMA SMA SMA novo (20, matriz) para um SMA de 20 períodos Como faço para lidar Função shift () É necessário implementar construtores. (Desculpe pela confusão). Não, você não precisa converter seus dados em uma matriz, desde que seus dados implemente IEnumerable1 e o tipo enumerado seja duplo. No que diz respeito à sua mensagem privada, você precisa converter o DataRow em algo que é enumerável de valores duplos. Sua abordagem funciona. Shift, desliza a janela para uma posição para a esquerda. Para um conjunto de dados de dizer 40 valores e um SMA de 20 períodos, você tem 21 posições em que a janela se encaixa (40 8211 20 1). Cada vez que você chama Shift (), a janela é movida para a esquerda por uma posição e Average () retorna o SMA para a posição atual da janela. Ou seja, a média não ponderada de todos os valores dentro da janela. Além disso, minha implementação permite calcular o SMA mesmo se a janela não estiver totalmente preenchida no início. Então, na essência, espero que isso ajude. Qualquer outra questão AVISO DE COPYRIGHT Christoph Heindl e cheind. wordpress, 2009-2012. O uso não autorizado e a duplicação deste material sem permissão expressa e escrita deste autor de blogs e do proprietário são estritamente proibidos. Excertos e links podem ser usados, desde que seja dado crédito completo e claro a Christoph Heindl e a cheind. wordpress com orientação apropriada e específica para o conteúdo original. Mensagens recentes Um olhar mais detalhado no Algoritmo médio avançado de CODAS A média móvel versátil no algoritmo CODAS avançado filtra o ruído da forma de onda, extrai significa, e elimina a deriva da linha de base. A média móvel é uma técnica matemática simples usada principalmente para eliminar aberrações e revelar a tendência real em uma coleção de pontos de dados. Você pode estar familiarizado com isso com a média de dados ruidosos em um experimento de física de primeiro ano, ou de rastrear o valor de um investimento. Você pode não saber que a média móvel também é um protótipo do filtro de resposta ao impulso finito, o tipo de filtro mais comum usado na instrumentação baseada em computador. Nos casos em que uma determinada forma de onda está cheia de ruído, onde uma média precisa ser extraída de um sinal periódico, ou onde uma linha de base devagar deve ser eliminada de um sinal de freqüência mais alta, um filtro médio móvel pode ser aplicado para alcançar o desejado resultado. O algoritmo de média móvel de Advanced CODAS oferece esse tipo de desempenho de filtragem de formas de onda. O CODAS avançado é um pacote de software de análise que opera em arquivos de dados de forma de onda existentes criados pela WinDaq de primeira geração ou pacotes de aquisição de dados WinDaq de segunda geração. Além do algoritmo da média móvel, o CODAS Avançado também inclui um utilitário do gerador de relatórios e rotinas de software para a integração de formas de onda, a diferenciação, a captação de picos e do vale, a rectificação e as operações aritméticas. Teoria do Filtro Médio em Mudança O algoritmo de média móvel móvel da DATAQ Instruments permite uma grande flexibilidade nas aplicações de filtragem de formas de onda. Ele pode ser usado como um filtro passa-baixa para atenuar o ruído inerente em muitos tipos de formas de onda, ou como um filtro passa-alto para eliminar uma linha de base de derivação a partir de um sinal de freqüência mais alta. O procedimento usado pelo algoritmo para determinar a quantidade de filtragem envolve o uso de um fator de suavização. Este fator de suavização, controlado por você através do software, pode ser aumentado ou diminuído para especificar o número de pontos de dados de formas de onda reais ou amostras que a média móvel abrangerá. Qualquer forma de onda periódica pode ser pensada como uma string longa ou coleção de pontos de dados. O algoritmo realiza uma média móvel tirando dois ou mais desses pontos de dados da forma de onda adquirida, adicionando-os, dividindo sua soma pelo número total de pontos de dados adicionados, substituindo o primeiro ponto de dados da forma de onda pela média calculada, e Repetindo os passos com o segundo, terceiro e assim por diante os pontos de dados até o final do dado ser alcançado. O resultado é uma segunda forma de onda gerada que consiste na média de dados e com o mesmo número de pontos que a forma de onda original. Figura 1 8212 Qualquer forma de onda periódica pode ser pensada como uma string longa ou coleção de pontos de dados. Na ilustração acima, os pontos de dados de forma de onda consecutivos são representados por quotyot para ilustrar como a média móvel é calculada. Neste caso, foi aplicado um fator de suavização de três, o que significa que três pontos consecutivos de dados da forma de onda original são adicionados, a sua soma dividida por três, e esse quociente é traçado como o primeiro ponto de dados de uma forma de onda gerada. O processo se repete com o segundo, terceiro e assim por diante pontos de dados da forma de onda original até o final do dado ser alcançado. Uma técnica especial de quotfeatherchot significa os pontos de início e de data final da forma de onda original para garantir que a forma de onda gerada contenha o mesmo número de pontos de dados que o original. A Figura 1 ilustra como o algoritmo da média móvel é aplicado aos pontos de dados da forma de onda (que são representados por y). A ilustração possui um fator de suavização de 3, o que significa que o valor médio (representado por a) será calculado em 3 valores de dados de forma de onda consecutivos. Observe a sobreposição que existe nos cálculos da média móvel. É esta técnica de sobreposição, juntamente com um tratamento especial de início e final que gera o mesmo número de pontos de dados na forma de onda média que existe no original. A forma como o algoritmo calcula uma média móvel merece um olhar mais atento e pode ser ilustrada com um exemplo. Digamos que temos uma dieta há duas semanas e queremos calcular nosso peso médio nos últimos 7 dias. Nós sumaríamos nosso peso no dia 7 com nosso peso nos dias 8, 9, 10, 11, 12 e 13 e depois multiplicaremos por 17. Para formalizar o processo, isso pode ser expresso como: a (7) 17 (y ( 7) y (8) y (9). Y (13)) Esta equação pode ser generalizada adicionalmente. A média móvel de uma forma de onda pode ser calculada por: Onde: um valor médio n posição do ponto de dados s fator de suavização y valor do ponto de dados real Figura 2 8212 A forma de onda de saída da célula de carga mostrada original e não filtrada no canal superior e como um ponto de 11 pontos Forma de onda média movida no canal inferior. O ruído que aparece na forma de onda original foi devido às intensas vibrações criadas pela imprensa durante a operação de embalagem. A chave para essa flexibilidade de algoritmos é a sua ampla gama de fatores de suavização selecionáveis ​​(de 2 a 1.000). O fator de suavização determina quantos pontos de dados reais ou amostras serão calculados de forma média. Especificar qualquer fator de suavização positivo simula um filtro passa-baixa enquanto especifica um fator de suavização negativo simula um filtro de passagem alta. Dado o valor absoluto do fator de suavização, os valores mais altos aplicam maiores restrições de suavização na forma de onda resultante e, inversamente, os valores mais baixos aplicam menos alisamento. Com a aplicação do fator de suavização apropriado, o algoritmo também pode ser usado para extrair o valor médio de uma dada forma de onda periódica. Um fator de suavização positivo mais alto é tipicamente aplicado para gerar valores de forma de onda média. Aplicando o algoritmo de média móvel Uma característica saliente do algoritmo de média móvel é que ele pode ser aplicado muitas vezes na mesma forma de onda, se necessário para obter o resultado de filtragem desejado. A filtragem de formas de onda é um exercício muito subjetivo. O que pode ser uma forma de onda devidamente filtrada para um usuário pode ser inaceitavelmente ruidoso para outro. Só você pode avaliar se o número de pontos médios selecionados foi muito alto, muito baixo ou simplesmente correto. A flexibilidade do algoritmo permite que você ajuste o fator de suavização e faça outro passar pelo algoritmo quando resultados satisfatórios não são alcançados com a tentativa inicial. A aplicação e as capacidades do algoritmo da média móvel podem ser ilustradas melhor pelos seguintes exemplos. Figura 3 8212 A forma de onda ECG mostrada original e não filtrada no canal superior e como uma forma de onda em média móvel de 97 pontos no canal inferior. Observe a ausência de deriva basal no canal inferior. Ambas as formas de onda são mostradas em uma condição comprimida para apresentação. Uma aplicação de redução de ruído Nos casos em que uma determinada forma de onda está cheia de ruído, o filtro médio móvel pode ser aplicado para suprimir o ruído e produzir uma imagem mais clara da forma de onda. Por exemplo, um cliente CODAS avançado estava usando uma imprensa e uma célula de carga em uma operação de empacotamento. Seu produto deveria ser comprimido para um nível predeterminado (monitorado pela célula de carga) para reduzir o tamanho da embalagem necessária para conter o produto. Por razões de controle de qualidade, eles decidiram monitorar a operação da imprensa com instrumentação. Ocorreu um problema inesperado quando começaram a ver a saída de células de carga em tempo real. Uma vez que a máquina de impressão vibrou consideravelmente enquanto estava em operação, a forma de onda de saída das células de carga era difícil de discernir porque continha uma grande quantidade de ruído devido à vibração, conforme mostrado no canal superior da Figura 2. Este ruído foi eliminado ao gerar um canal em média móvel de 11 pontos como mostrado no canal inferior da Figura 2. O resultado foi uma imagem muito mais clara da saída das células de carga. Uma aplicação na eliminação da deriva da linha de base Nos casos em que uma linha de base devagar deve ser removida de um sinal de freqüência mais alta, o filtro de média móvel pode ser aplicado para eliminar a linha de base da derivação. Por exemplo, uma forma de onda ECG tipicamente exibe algum grau de andar de linha base como pode ser visto no canal superior da Figura 3. Esta deriva de linha de base pode ser eliminada sem alterar ou perturbar as características da forma de onda como mostrado no canal inferior da Figura 3. Isto é conseguido aplicando um fator de alívio de valor negativo apropriado durante o cálculo da média móvel. O fator de suavização apropriado é determinado dividindo um período de forma de onda (em segundos) pelo intervalo de amostra de canais. O intervalo de amostra de canais é simplesmente o recíproco da taxa de amostragem dos canais e é convenientemente exibido no menu de utilidade média móvel. O período da forma de onda é facilmente determinado a partir da tela de exibição posicionando o cursor em um ponto conveniente na forma de onda, definindo um marcador de tempo e, em seguida, movendo o cursor um ciclo completo para longe do marcador de tempo exibido. A diferença horária entre cursor e marcador de tempo é um período de forma de onda e é exibida na parte inferior da tela em segundos. No nosso exemplo de ECG, a forma de onda possuía um intervalo de amostra de canal de 0,004 segundos (obtido a partir do menu de utilidade média móvel) e um período de forma de onda foi medido para span .388 segundos. Dividir o período da forma de onda pelo intervalo de amostra dos canais nos deu um fator de suavização de 97. Como é a deriva da linha de base que estamos interessados ​​em eliminar, aplicamos um fator de suavização negativo (-97) ao algoritmo da média móvel. Isso, de fato, subtraiu o resultado médio móvel do sinal da forma de onda original, que eliminou a deriva da linha de base sem alterar a informação da forma de onda. Outros Problemas Médicos em Movimento de Formas de Onda Qualquer que seja a aplicação, a razão universal para aplicar um filtro de média móvel é superar quotly as aberrações altas e baixas e revelar um valor de forma de onda intermediária mais representativo. Ao fazer isso, o software não deve comprometer outros recursos da forma de onda original no processo de geração de uma forma de onda em média móvel. Por exemplo, o software deve ajustar automaticamente as informações de calibração associadas ao arquivo de dados original, de modo que a forma de onda em média móvel esteja nas unidades de engenharia apropriadas quando geradas. Todas as leituras nos números foram realizadas usando o software WinDaq Data Acquisition

No comments:

Post a Comment