Thursday 24 August 2017

Média De Movimentação Filtro Pesos


Filtros FIR, filtros IIR e equação de diferença de coeficiente constante linear Filtros de média móvel causal (FIR) Nós discutimos sistemas em que cada amostra da saída é uma soma ponderada de (algumas das) amostras da entrada. Vamos tomar um sistema de soma ponderada causal, onde causal significa que uma dada amostra de saída depende apenas da amostra de entrada atual e outros insumos mais cedo na seqüência. Nem os sistemas lineares em geral, nem os sistemas finitos de resposta ao impulso em particular, precisam ser causais. No entanto, a causalidade é conveniente para um tipo de análise que iria explorar em breve. Se simbolizamos as entradas como valores de um vetor x. E as saídas como valores correspondentes de um vetor y. Então tal sistema pode ser escrito como onde os valores de b são quotweights aplicados às amostras de entrada atuais e anteriores para obter a amostra de saída atual. Podemos pensar na expressão como uma equação, com o sinal de igual signo igual a, ou como uma instrução processual, com o sinal de igual significação atribuição. Vamos escrever a expressão para cada amostra de saída como um loop MATLAB de instruções de atribuição, onde x é um vetor N-comprimento de amostras de entrada, e b é um vetor M-comprimento de pesos. A fim de lidar com o caso especial no início, vamos incorporar x em um vetor mais longo xhat cujas primeiras M-1 amostras são zero. Vamos escrever a soma ponderada para cada y (n) como um produto interno, e faremos algumas manipulações das entradas (como inverter b) para este fim. Esse tipo de sistema é muitas vezes chamado de filtro de média móvel, por razões óbvias. De nossas discussões anteriores, deve ser óbvio que tal sistema é linear e invariante ao deslocamento. Claro, seria muito mais rápido usar a convolução de função MATLAB conv () em vez do nosso mafilt (). Em vez de considerar as primeiras amostras M-1 da entrada como sendo zero, poderíamos considerá-las iguais às últimas amostras M-1. Isso é o mesmo que tratar a entrada como periódica. Bem, use cmafilt () como o nome da função, uma pequena modificação da função mafilt () anterior. Na determinação da resposta de impulso de um sistema, não há geralmente nenhuma diferença entre estes dois, desde que todas as amostras não-iniciais da entrada são zero: Uma vez que um sistema deste tipo é linear e shift-invariante, sabemos que seu efeito em qualquer Sinusoid será apenas a escala e deslocá-lo. Aqui é importante que usemos a versão circular A versão circularmente convoluta é deslocada e escalada um pouco, enquanto a versão com convolução ordinária é distorcida no início. Vamos ver o que a escala exata e deslocamento é usando um fft: Tanto a entrada ea saída têm amplitude apenas nas freqüências 1 e -1, que é como deveria ser, uma vez que a entrada era uma sinusoid eo sistema era linear. Os valores de saída são maiores numa razão de 10,62518 1,3281. Este é o ganho do sistema. E quanto à fase Nós só precisamos olhar onde a amplitude é diferente de zero: A entrada tem uma fase de pi2, como nós pedimos. A fase de saída é deslocada por um adicional 1.0594 (com sinal oposto para a freqüência negativa), ou cerca de 16 de um ciclo à direita, como podemos ver no gráfico. Agora vamos tentar uma sinusoid com a mesma freqüência (1), mas em vez de amplitude 1 e fase pi2, vamos tentar amplitude 1,5 e fase 0. Sabemos que apenas a freqüência 1 e -1 terá amplitude não-zero, então vamos apenas olhar Para eles: Novamente a razão de amplitude (15.937712.0000) é 1.3281 - e quanto à fase é novamente deslocada por 1.0594 Se esses exemplos são típicos, podemos prever o efeito do nosso sistema (resposta de impulso .1 .2 .3 .4 .5) em qualquer sinusoide com freqüência 1 - a amplitude será aumentada em um fator de 1,3281 e a fase (freqüência positiva) será deslocada em 1,0594. Poderíamos continuar a calcular o efeito desse sistema sobre sinusóides de outras freqüências pelos mesmos métodos. Mas há uma maneira muito mais simples, e uma que estabelece o ponto geral. Dado que a circunvolução (circular) no domínio do tempo significa a multiplicação no domínio da frequência, daí decorre que, por outras palavras, a DFT da resposta de impulso é a razão da DFT da saída para a DFT da entrada. Nesta relação os coeficientes de DFT são números complexos. Desde abs (c1c2) abs (c1) abs (c2) para todos os números complexos c1, c2, esta equação nos diz que o espectro de amplitude da resposta de impulso será sempre a relação entre o espectro de amplitude da saída para a da entrada . No caso do espectro de fase, ângulo (c1c2) ângulo (c1) - ângulo (c2) para todos os c1, c2 (com a condição de que as fases diferentes por n2pi são considerados iguais). Portanto, o espectro de fase da resposta ao impulso será sempre a diferença entre os espectros de fase da saída e da entrada (com quaisquer correções de 2pi são necessárias para manter o resultado entre - pi e pi). Podemos ver os efeitos de fase mais claramente se desempacotarmos a representação da fase, isto é, se adicionarmos vários múltiplos de 2pi conforme necessário para minimizar os saltos que são produzidos pela natureza periódica da função ângulo (). Embora a amplitude e a fase sejam normalmente utilizadas para apresentação gráfica e mesmo tabular, uma vez que são uma forma intuitiva de pensar os efeitos de um sistema sobre os vários componentes de frequência de sua entrada, os coeficientes de Fourier complexos são mais úteis algébricamente, A expressão simples da relação A abordagem geral que acabamos de ver funcionará com filtros arbitrários do tipo esboçado, em que cada amostra de saída é uma soma ponderada de algum conjunto de amostras de entrada. Como mencionado anteriormente, estes são muitas vezes chamados filtros de resposta de impulso finito, porque a resposta ao impulso é de tamanho finito, ou às vezes filtros de média móvel. Podemos determinar as características de resposta de freqüência de tal filtro a partir da FFT de sua resposta de impulso e também podemos projetar novos filtros com características desejadas por IFFT a partir de uma especificação da resposta de freqüência. Filtros Autoregressivos (IIR) Não haveria nenhum ponto em ter nomes para filtros FIR, a menos que houvesse algum outro tipo de distinção, de modo que aqueles que estudaram pragmática não ficarão surpresos ao saber que existe de fato outro tipo principal Do filtro tempo-invariante linear. Estes filtros são às vezes chamados recursivos porque o valor de saídas anteriores (assim como entradas anteriores) importa, embora os algoritmos sejam geralmente escritos usando construções iterativas. Eles também são chamados filtros Infinite Impulse Response (IIR), porque em geral sua resposta a um impulso continua para sempre. Eles também são chamados de filtros auto-regressivos, porque os coeficientes podem ser considerados como o resultado de fazer uma regressão linear para expressar valores de sinal como uma função de valores de sinal anteriores. A relação dos filtros FIR e IIR pode ser vista claramente numa equação de diferença de coeficiente constante linear, isto é, estabelecendo uma soma ponderada de saídas igual a uma soma ponderada de entradas. Isto é como a equação que damos anteriormente para o filtro causal FIR, exceto que, além da soma ponderada de insumos, também temos uma soma ponderada de saídas. Se quisermos pensar nisso como um procedimento para gerar amostras de saída, precisamos reorganizar a equação para obter uma expressão para a amostra de saída atual y (n), Adotando a convenção de que a (1) 1 (por exemplo, escalando outros como E bs), podemos nos livrar do termo 1a (1): y (n) b (1) x (n) b (2) x (n-1). B (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Se todos os a (n) diferentes de a (1) são zero, isso reduz a nosso velho amigo o filtro FIR causal. Este é o caso geral de um filtro (causal) LTI, e é implementado pelo filtro de função MATLAB. Vejamos o caso em que os coeficientes b diferentes de b (1) são zero (em vez do caso FIR, onde a (n) são zero): Neste caso, a amostra de saída corrente y (n) é calculada como um (N-1), y (n-2), etc. Para ter uma idéia do que acontece com esses filtros, vamos começar com o caso em que: Isto é, a amostra de saída atual é a soma da amostra de entrada corrente e metade da amostra de saída anterior. Bem, tome um impulso de entrada através de alguns passos de tempo, um de cada vez. Deve ficar claro neste ponto que podemos facilmente escrever uma expressão para o n-ésimo valor de amostra de saída: é apenas (se MATLAB contado a partir de 0, isso seria simplesmente .5n). Uma vez que o que estamos calculando é a resposta ao impulso do sistema, temos demonstrado por exemplo que a resposta ao impulso pode de fato ter infinitas amostras diferentes de zero. Para implementar esse filtro trivial de primeira ordem no MATLAB, poderíamos usar o filtro. A chamada será assim: eo resultado é: Este negócio é realmente ainda linear Podemos olhar para isto empiricamente: Para uma abordagem mais geral, considere o valor de uma amostra de saída y (n). Por substituição sucessiva poderíamos escrever isto como Isto é exatamente como o nosso velho amigo a forma convolução-soma de um filtro FIR, com a resposta ao impulso fornecida pela expressão .5k. E o comprimento da resposta ao impulso é infinito. Assim, os mesmos argumentos que usamos para mostrar que os filtros FIR eram lineares agora se aplicam aqui. Até agora isso pode parecer um monte de barulho por não muito. O que é toda esta linha de investigação bom para Bem responder esta questão em etapas, começando com um exemplo. Não é uma grande surpresa que possamos calcular uma amostra exponencial por multiplicação recursiva. Vamos olhar para um filtro recursivo que faz algo menos óbvio. Desta vez, torná-lo um filtro de segunda ordem, de modo que a chamada para filtrar será da forma Vamos definir o segundo coeficiente de saída a2 para -2cos (2pi40) eo terceiro coeficiente de saída a3 para 1, e olhar para o impulso resposta. Não é muito útil como um filtro, na verdade, mas gera uma onda senoidal amostrada (de um impulso) com três multiplicações por amostra. Para entender como e por que faz isso, e como filtros recursivos podem ser projetados e analisados ​​em O caso mais geral, precisamos dar um passo atrás e dar uma olhada em algumas outras propriedades de números complexos, no caminho para a compreensão da transformada z. Moving médias Médias móveis Com conjuntos de dados convencionais o valor médio é muitas vezes o primeiro, e um dos Mais útil, estatísticas de resumo para calcular. Quando os dados estão na forma de uma série temporal, a média da série é uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos em curto, anteriores ao período atual ou centrados no período atual, são freqüentemente mais úteis. Como esses valores médios variam ou se movem, à medida que o período atual se move a partir do tempo t 2, t 3, etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel exponencialmente ponderada é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela sua proximidade com o tempo atual. Como não existe uma, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisado como uma série e usado na modelagem e previsão. Uma gama de modelos pode ser construída usando médias móveis, e estes são conhecidos como modelos MA. Se tais modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média destes valores pode ser calculada. Se assumimos que n é bastante grande, e selecionamos um inteiro k que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (de ordem k): Cada medida representa a média dos valores de dados sobre um intervalo de k observações. Observe que a primeira MA possível de ordem k gt0 é aquela para t k. De forma mais geral, podemos descartar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no instante t e os intervalos de tempo anteriores k-1. Se forem aplicados pesos que diminuam a contribuição de observações que estão mais distantes no tempo, a média móvel é dita ser suavizada exponencialmente. As médias móveis são frequentemente utilizadas como uma forma de previsão, pelo que o valor estimado para uma série no tempo t 1, S t 1. É tomado como o MA para o período até e incluindo o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores anteriores registrados até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados sobre poluição atmosférica mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias, mostrada aqui em vermelho. Como pode ser visto, a linha de MA suaviza os picos e depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula padrão de cálculo de forward significa que os primeiros k -1 pontos de dados não têm nenhum valor de MA, mas depois os cálculos se estendem até o ponto de dados final da série. Uma razão para calcular médias móveis simples da maneira descrita é que ela permite que os valores sejam calculados para todos os intervalos de tempo desde o tempo tk até o presente, e Como uma nova medição é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem alguns problemas com esta abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, digamos, deve ser localizado no tempo t -1, não no tempo t. E para um MA sobre um número par de períodos, talvez ele deve ser localizado no ponto médio entre dois intervalos de tempo. Uma solução para esse problema é usar cálculos centralizados de MA, nos quais o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, esta abordagem não é geralmente usada porque exige que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Em casos onde a análise é inteiramente de uma série existente, o uso de Mas centralizado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, removendo alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) as tendências de forma semelhante à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar um cálculo da média móvel a uma série que já tenha sido suavizada, isto é, suavizar ou filtrar uma série já suavizada. Por exemplo, com uma média móvel de ordem 2, podemos considerá-la como sendo calculada usando pesos, então a MA em x 2 0,5 x 1 0,5 x 2. Da mesma forma, a MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 ou seja, a filtragem de 2 estádios Processo (ou convolução) produziu uma média móvel simétrica ponderada variável, com pesos. Várias circunvoluções podem produzir médias móveis ponderadas bastante complexas, algumas das quais foram encontradas de uso particular em campos especializados, como nos cálculos de seguros de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computadas com o comprimento da periodicidade como um conhecido. Por exemplo, com os dados mensais as variações sazonais podem frequentemente ser removidas (se este for o objetivo) por aplicar uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro e o último que são ponderados por 12. Isto é porque haverá Ser de 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis exponencialmente ponderadas (EWMA) Com a fórmula da média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos k pesos seria igual a 1 k. Então a soma dos pesos seria 1, ea fórmula seria: Já vimos que múltiplas aplicações desse processo resultam em pesos variando. Com médias móveis ponderadas exponencialmente, a contribuição para o valor médio das observações que são mais removidas no tempo é deliberada reduzida, enfatizando os eventos mais recentes (locais). Essencialmente um parâmetro de suavização, 0lt alfa lt1, é introduzido, ea fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: Se os pesos no modelo simétrico são selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão a 1, e quando q se tornar grande, aproximar-se-á da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial agindo como a função do kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esta disposição, com q 1, produzindo os pesos. Em suavização exponencial é necessário usar um conjunto de pesos que somam 1 e que reduzem em tamanho geometricamente. Os pesos usados ​​são tipicamente da forma: Para mostrar que esses pesos somam 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1-x) p. Onde x (1-) e p -1, o que dá: Isso então fornece uma forma de média móvel ponderada da forma: Esta soma pode ser escrita como uma relação de recorrência: o que simplifica muito a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos a somar a 1 (para pequenos valores de alfa, isso normalmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escrevem: enquanto a literatura da teoria de controle usa freqüentemente Z em vez de S para os valores exponencialmente ponderados ou suavizados (ver, por exemplo, Lucas e Saccucci, 1990, LUC1 , Eo site do NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com alfa 1, a estimativa média é simplesmente o seu valor medido (ou o valor do item de dados anterior). Com 0,5 a estimativa é a média móvel simples das medições atuais e anteriores. Nos modelos de previsão, o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isto mostra que o valor da previsão no tempo t 1 é uma combinação da média móvel exponencial ponderada anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Supondo que uma série temporal é dada e uma previsão é necessária, um valor para alfa é necessário. Isto pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados obtidos com valores variáveis ​​de alfa para cada t 2,3. Definindo a primeira estimativa como sendo o primeiro valor de dados observado, x 1. Em aplicações de controle, o valor de alfa é importante na medida em que é usado na determinação dos limites de controle superior e inferior e afeta o comprimento médio de execução (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que as séries temporais representam um conjunto de variáveis ​​independentes, aleatoriamente distribuídas, com variância comum). Nestas circunstâncias, a variância da estatística de controlo é (Lucas e Saccucci, 1990): Os limites de controlo são usualmente definidos como múltiplos fixos desta variância assintótica, e. - 3 vezes o desvio padrão. Se alfa 0,25, por exemplo, e os dados sendo monitorados forem assumidos como tendo uma distribuição Normal, N (0,1), quando em controle, os limites de controle serão - 1,134 e o processo atingirá um ou outro limite em 500 passos na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob várias suposições usando procedimentos de Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARLs quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com um deslocamento 0,5 com alfa 0,25 o ARL é menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez à série temporal e, em seguida, análises ou processos de controlo são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, o alisamento exponencial de dois ou três estágios pode ser aplicado como um meio de remover (explicitamente modelar) esses efeitos (veja a seção sobre Previsão abaixo e o exemplo trabalhado pelo NIST). CHA1 Chatfield C (1975) A Análise da Série de Tempos: Teoria e Prática. Chapman e Hall, Londres HUN1 Hunter J S (1986) A média móvel exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de controlo da média móvel ponderada exponencialmente: propriedades e melhoramentos. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de gráficos de controle baseados em médias móveis geométricas. Technometrics, 1, 239-250Moving Average Filter Você pode usar o módulo Moving Average Filter para calcular uma série de médias unilaterais ou bidirecionais em um conjunto de dados, usando um comprimento de janela que você especificar. Depois de definir um filtro que atenda às suas necessidades, você pode aplicá-lo a colunas selecionadas em um conjunto de dados, conectando-o ao módulo Aplicar filtro. O módulo faz todos os cálculos e substitui valores dentro de colunas numéricas com médias móveis correspondentes. Você pode usar a média móvel resultante para traçar e visualizar, como uma nova linha de base suave para modelagem, para calcular variâncias contra cálculos para períodos semelhantes, e assim por diante. Esse tipo de média ajuda a revelar e prever padrões temporais úteis em dados retrospectivos e em tempo real. O tipo mais simples de média móvel começa em alguma amostra da série e usa a média dessa posição mais as n posições anteriores em vez do valor real. (Você pode definir n como quiser.) Quanto maior for o período n no qual a média é calculada, menor será a variação entre os valores. Além disso, à medida que aumenta o número de valores utilizados, menos efeito tem um valor único na média resultante. Uma média móvel pode ser unilateral ou bilateral. Em uma média unilateral, apenas os valores que precedem o valor do índice são usados. Em uma média de dois lados, valores passados ​​e futuros são usados. Para cenários em que você está lendo dados em fluxo contínuo, as médias móveis cumulativas e ponderadas são particularmente úteis. Uma média móvel cumulativa leva em consideração os pontos anteriores ao período corrente. Você pode pesar todos os pontos de dados igualmente ao calcular a média, ou pode garantir que os valores mais próximos do ponto de dados atual são ponderados mais fortemente. Em uma média móvel ponderada. Todos os pesos devem somar a 1. Em uma média móvel exponencial. As médias consistem em uma cabeça e uma cauda. Que pode ser ponderada. Uma cauda ligeiramente ponderada significa que a cauda segue a cabeça muito de perto, então a média se comporta como uma média móvel em um curto período de ponderação. Quando os pesos da cauda são mais pesados, a média se comporta mais como uma média móvel simples mais longa. Adicione o módulo Filtro de média móvel à sua experiência. Para Comprimento. Digite um valor de número inteiro positivo que define o tamanho total da janela através da qual o filtro é aplicado. Isso também é chamado de máscara de filtro. Para uma média móvel, o comprimento do filtro determina quantos valores são calculados na janela deslizante. Filtros mais longos também são chamados filtros de ordem superior, e fornecem uma janela de cálculo maior e uma aproximação mais próxima da linha de tendência. Filtros de ordem menor ou menor usam uma janela de cálculo menor e se assemelham mais aos dados originais. Para Tipo. Escolha o tipo de média móvel a ser aplicada. O Azure Machine Learning Studio suporta os seguintes tipos de cálculos de média móvel: Uma média móvel simples (SMA) é calculada como uma média de rolamento não ponderada. As médias móveis triangulares (TMA) são médias duas vezes para uma linha de tendência mais suave. A palavra triangular é derivada da forma dos pesos que são aplicados aos dados, que enfatiza os valores centrais. Uma média móvel exponencial (EMA) dá mais peso aos dados mais recentes. A ponderação cai exponencialmente. Uma média móvel exponencial modificada calcula uma média móvel em execução, onde calcular a média móvel em qualquer ponto considera a média móvel previamente calculada em todos os pontos precedentes. Este método produz uma linha de tendência mais suave. Dado um único ponto e uma média móvel atual, a média móvel cumulativa (CMA) calcula a média móvel no ponto atual. Adicione o conjunto de dados que tem os valores que você deseja calcular uma média móvel e adicione o módulo Aplicar filtro. Conecte o Filtro de Média Móvel à entrada do lado esquerdo de Aplicar Filtro. E conecte o conjunto de dados à entrada do lado direito. No módulo Aplicar filtro, use o seletor de coluna para especificar quais colunas o filtro deve ser aplicado. Por padrão, o filtro que você criar será aplicado a todas as colunas numéricas, portanto, certifique-se de excluir todas as colunas que não possuem dados apropriados. Execute a experiência. Nesse ponto, para cada conjunto de valores definido pelo parâmetro de comprimento do filtro, o valor atual (ou índice) é substituído pelo valor da média móvel. Qual é a diferença entre a média móvel ea média móvel ponderada A média móvel de 5 períodos, com base em Os preços acima, seriam calculados usando a seguinte fórmula: Com base na equação acima, o preço médio durante o período listado acima foi de 90,66. Usando médias móveis é um método eficaz para eliminar flutuações de preços fortes. A principal limitação é que os pontos de dados de dados mais antigos não são ponderados de forma diferente dos pontos de dados próximos ao início do conjunto de dados. É aqui que as médias móveis ponderadas entram em jogo. As médias ponderadas atribuem uma ponderação mais pesada a pontos de dados mais atuais, uma vez que são mais relevantes do que pontos de dados no passado distante. A soma da ponderação deve somar 1 (ou 100). No caso da média móvel simples, as ponderações são distribuídas igualmente, razão pela qual não são mostradas na tabela acima. Preço de Fechamento da AAPL

No comments:

Post a Comment